
ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 3, Issue 11, November 2014

Copyright to IJARCCE www.ijarcce.com 8622

Motion Estimation

Testing Applications using Error Detection and

Data Recovery Architecture

BANDI DHILLESWARA RAO
 1
, BONTALAKOTI PRASAD KUMAR

2

M.Tech [Scholar], Dept. Of ECE, Swamy Vivekananda Engineering College, Bobbili, AP, India 1

Assistant Professor, Dept. Of ECE, Swamy Vivekananda Engineering College, Bobbili, AP, India 2

Abstract: This paper presents an error detection and data recovery (EDDR) design, based on the residue-and-quotient

(RQ) code, to embed into motion estimation (ME) for video coding testing applications. An error in processing

elements (PEs), i.e. key components of a ME, can be detected and recovered effectively by using the EDDR design.

The proposed EDDR design for ME testing can detect errors and recover data with an acceptable area overhead and

timing penalty. The functional verification and synthesis can be done by Xilinx ISE. That is when compare to the

existing design the implemented design area and timing will be reduced..

Keywords: EDDR, Motion estimation, processing elements, testing

I. INTRODUCTION

The new Joint Video Team (JVT) video coding standard

has garnered increased attention recently. Generally,

motion estimation computing array (MECA) performs up

to 50% of computations in the entire video coding system,

and is typically considered the computationally most

important part of video coding systems. Thus, integrating
the MECA into a system-on-chip (SOC) design has

become increasingly important for video coding

applications. Although advances in VLSI technology

allow integration of a large number of processing elements

(PEs) in an MECA into an SOC, this increases the logic-

per-pin ratio, thereby significantly decreasing the

efficiency of chip logic testing. For a commercial chip, a

video coding system must introduce design for testability

(DFT), especially in an MECA. The objective of DFT is to

increase the ease with which a device can be tested to

guarantee high system reliability. Many DFT approaches

have been developed. These approaches can be divided
into three categories: ad hoc (problem oriented),

structured, and built-in self-test (BIST). Among these

techniques, BIST has an obvious advantage in that

expensive test equipment is not needed and tests are low

cost.

This project develops a built-in self-detection and

correction (BISDC) architecture for motion estimation

computing arrays(MECAs).Based on the error detection &

correction concepts of biresidue codes, any single error in

each processing element in an MECA can be effectively
detected and corrected online using the proposed BISD

and built-in self-correction circuits. Performance analysis

and evaluation demonstrate that the proposed BISDC

architecture performs well in error detection and

correction with minor area. The Motion Estimation

Computing Array is used in Video Encoding applications

to calculate the best motion between the current frame and

reference frames. The MECA is in decoding application

occupies large amount of area and timing penalty. By

introducing the concept of Built-in Self test technique the

area overhead is increased in less amount of area. In this

Project the Built-in Self test Technique (BIST) is included

in the MECA and in each of Processing Element in

MECA. Thus by introducing the BIST Concept the testing
is done internally without Connecting outside testing

Requirements. So the area required is also reduces. And in

this Project the Errors in MECA are Calculated and the

Concept of Diagnoses i.e. Self Detect and Self Repair

Concepts are introduced

II. MOTION ESTIMATION

Motion Estimation (ME) is the process of creating motion

vectors to track the motion of objects within video

footage. It is an essential part of many compression

standards and is a crucial component of the H.264 video

compression standard .In particular ME can consist of over

40% of the total computation. Motion estimation is the
technique of finding a suitable Motion Vector (MV) that

best describes the movement of a set of pixels from its

original position within one frame to its new positions in

the subsequent frame. Encoding just the motion vector for

the set of pixels requires significantly less bits than what is

required to encode the entire set of pixels, while still

retaining enough information to reproduce the original

video sequence. A standard movie, which is also known as

motion picture, can be defined as a sequence of several

scenes. A scene is then defined as a sequence of several

seconds of motion recorded without interruption. A scene
usually has at least three seconds. A movie in the cinema

is shown as a sequence of still pictures, at a rate of 24

frames per second. Similarly, a TV broadcast consists of a

transmission of 30 frames per second (NTSC, and some

flavors of PAL, such as PAL-M), 25 frames per second

(PAL, SECAM) or anything from 5 to 30 frames per

second for typical videos in the Internet.

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 3, Issue 11, November 2014

Copyright to IJARCCE www.ijarcce.com 8623

 The name motion picture comes from the fact that a

video, once encoded, is nothing but a sequence of still

pictures that are shown at a reasonably high frequency.

That gives the viewer the illusion that it is in fact a

continuous animation. Each frame is shown for one small

fraction of a second, more precisely 1/ k seconds, where k

is the number of frames per second. Coming back to the

definition of a scene, where the frames are captured

without interruption, one can expect consecutive frames to

be quite similar to one another, as very little time is
allowed until the next frame is to be captured. With all this

in mind we can finally conclude that each scene is

composed of at least 3 × k frames (since a scene is at least

3 seconds long). In the NTSC case, for example, that

means that a movie is composed of a sequence of various

segments (scenes) each of which has at least 90 frames

similar to one another.

Fig.1: Video Encoding System

Fig.1 gives details on motion estimation we need to

describe briefly how a video sequence is organized. As
mentioned earlier a video is composed of a number of

pictures. Each picture is composed of a number of pixels

or peals (picture elements). A video frame has its pixels

grouped in 8×8 blocks. The blocks are then grouped in

macro blocks (MB), which are composed of 4 luminance

blocks each (plus equivalent chrominance blocks). Macro

blocks are then organized in ―groups of blocks‖ (GOBs)

which are grouped in pictures (or in layers and then

pictures).

Pictures are further grouped in scenes, as described above,

and we can consider scenes grouped as movies. Motion
estimation is often performed in the macro block domain.

For simplicity‘ sake we‘ll refer to the macro blocks as

blocks, but we shall remember that most often the macro

block domain is the one in use for motion estimation. For

motion estimation the idea is that one block b of a current

frame C is sought for in a previous (or future) frame R. If

a block of pixels which is similar enough to block b is

found in R, then instead of transmitting the whole block

just a ―motion vector‖ is transmitted.

Ideally, a given macro blocks would be sought for in the

whole reference frame; however, due to the computational

complexity of the motion estimation stage the search is

usually limited to a pre-defined region around the macro

blocks. Most often such region includes 15 or 7 pixels to

all four directions in a given reference frame. The search

region is often denoted by the interval [-p, p] meaning that

it includes p pixels in all directions. The growing need of

real-time video applications, video compression plays a

vital role in achieving bandwidth efficiency for both
transmission and storage and efficient motion estimation is

a key factor for achieving enhanced compression ratio.

However, motion estimation involves high computational

complexity, causing bottleneck in the real-time

applications. To meet real-time processing needs, several

motion vector search strategies and hardware designs have

been proposed. These primarily focus on reducing the

number of Sum-of-Absolute-Difference (SAD) operations

at the cost of controller complexity.

One of the main design goals is to reduce the
computational complexity and power consumptions,

without sacrificing image quality. Some algorithms and

architectures succeeded in reducing power consumption

and satisfied the required performance. The simplest and

most effective method of motion estimation is to

exhaustively compare each NxN macro block of the

current frame with all the candidate blocks in the search

window defined with in the previous processed frame and

find the best matching position with the lowest distortion.

This is called Full Search Block Matching algorithm

(FSBM).

A full search block matching process with a search range p

has a search window of size (2p+N) x (2p+N) pixels and a

total of (2p+1)2 candidate blocks in the reference frame

for each block of the current frame. The distortion values
are computed for each of the candidate blocks and its

minimum value is found from the set of (2p+1)2 candidate

blocks. The distortion measure is Sum of Absolute

Difference for its simplicity, in which the candidate block

with minimum amount of distortion is considered as the

best-match. To achieve a best trade-off between the

computational complexity of FSBM and degraded PSNR

of motion compensated frame using faster algorithms,

recently some researchers have investigated reduction of

computational complexities of FSBM.

All these algorithms are not optimal in the sense that

instead of exhaustive search, only some fixed positions are

searched, based on the predictions of motion. Any error in

motion prediction may lead to wrong motion vectors,

resulting in poor peak signal-to-noise ratio (PSNR) of the

motion-compensated frame.

The computationally intensive nature of FSBM and the

demand of real-time processing render the VLSI

implementation of FSBM is a necessity. In this paper we

propose efficient and low power VLSI architecture, which

has been developed to meet the speed requirement of the

current video coding system.

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 3, Issue 11, November 2014

Copyright to IJARCCE www.ijarcce.com 8624

III. BIST

With recent advances in semiconductor manufacturing

technology, the production and usage of very-large-scale

integration (VLSI) circuits has run into a variety of testing
challenges during wafer probe, wafer sort, pre-ship

screening, incoming test of chips and boards, test of

assembled boards, system test, periodic maintenance,

repair test, etc. Traditional test techniques that use

automatic test pattern generation (ATPG) software to

target single faults for digital circuit testing have become

quite expensive and can no longer provide sufficiently

high fault coverage for deep submicron or nanometer

designs from the chip level to the board and system levels.

One approach to alleviate these testing problems is to

incorporate Built-in-self test (BIST) features into a digital
circuit at the design stage with logic BIST, circuits that

generate test patterns and analyze the output responses of

the functional circuitry are embedded in the chip or

elsewhere on the same board where the chip resides. There

are two general categories of BIST techniques for testing

random logic:

(1) Offline BIST and

(2) Online BIST.

A general form of logic BIST techniques is

Fig.2: Types of BIST

OFFLINE BIST: It is performed when the functional

circuitry is not in normal mode. This technique does not

detect any real-time errors but is widely used in the

industry. Logic BIST techniques for testing the functional

circuitry at the system, board, or chip level to ensure

product quality.

FUNCTIONAL OFFILINE BIST: It performs a test

based on the functional specification of the functional

circuitry and often employs a functional or high-level fault
model. Normally such a test is implemented as diagnostic

software or firmware.

STRUCTURAL OFFLINE BIST: It performs a test

based on the structure of the functional circuitry. There are

two general classes of structural offline BIST techniques:

EXTERNAL BIST: In which test pattern generation and

output response analysis is done by circuitry that is

separate from the functional circuitry being tested.

INTERNAL BIST: In which the functional storage

elements are converted into test pattern generators and

output response analyzers. Some external BIST schemes
test sequential logic directly by applying test patterns at

the inputs and analyzing the responses at its outputs. Such

techniques are often used for board-level and system level

self-test. The BIST schemes discussed here all assume that

the functional storage elements of the circuit are converted

into a scan chain or multiple scan chains for combinational

circuit testing.

ONLINE BIST: It is performed when the functional

circuitry is in normal operational mode. It can be done

either concurrently or nonconcurrently.

concurrent online bist: Testing is conducted

simultaneously during normal functional operation. The

functional circuitry is usually implemented with coding

techniques or with duplication and comparison. When an
intermittent or transient error is detected, the system will

correct the error on the spot, rollback to its previously

stored system states, and repeat the operation, or generate

an interrupt signal for repeated failures.

nonconcurrent online bist: testing is performed when the

functional circuitry is in idle mode. This is often

accomplished by executing diagnosis software routines

(macrocode) or diagnosis firmware routines (microcode).

The test process can be interrupted at any time so that

normal operation can resume.

The generalized implementation flow diagram of the

project is represented as follows. Initially the market

research should be carried out which covers the previous

version of the design and the current requirements on the

design. Based on this survey, the specification and the

architecture must be identified. Then the RTL modeling

should be carried out in VHDL with respect to the

identified architecture. Once the RTL modelling is done, it

should be simulated and verified for all the cases. The

functional verification should meet the intended

architecture and should pass all the test cases.

Once the functional verification is clear, the RTL model

will be taken to the synthesis process. Three operations

will be carried out in the synthesis process such as

a) Translate

b) Map

c) Place and Route

Fig.3: Basic Structure of BIST

IV. RESULTS

In the Fig 4 shows the two inputs with 8-bit length are ‗a‘

(current Pixels) and ‗b‘ (reference pixels) and 8-bit PE

Output result. Here PE Output is nothing but sum of

absolute difference (SAD).

Two inputs a, b i.e. current and reference pixels each of 8-

bit length and one output result also 8-bit length. The
behavioral simulation waveform for the Processing

Element is shown in Fig 5.

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 3, Issue 11, November 2014

Copyright to IJARCCE www.ijarcce.com 8625

Fig.4: Processing Element Schematic Diagram

Fig.5: Simulation Waveform for Processing Element

Fig.6: RQCG Schematic Diagram

Coder as a three inputs clk, cur_pix, ref_pix and each of 8-
bit length and output consists two coders i.e. out_a, out_b

it consists of 4-bit length. The input of a coder is clk,

current and reference pixels are shown in fig 6. The

behavioral simulation waveform for the Coder as a three

inputs clk, cur_pix, ref_pix and each of 8-bit length and

output consists two coders i.e. out_a, out_b it consists of

4-bit length. The input of a coder is clk, current and

reference pixels are shown in Fig 7.

Fig 7: Simulation Waveform of RQCG

Fig.8: TOP Module

The proposed design is developed in a top down design

methodology that the code is a mixed version of both

behavioral and structural. The proposed Architecture

consists of basic modules like Sum of Absolute

Difference, Processing Element, Modulus Division,

RQCG, TCG, EDC and DRC modules. The schematic of

Top Module for BISDC Architecture for MECA is shown

in Fig 8.The behavioral simulation results for Top Module

i.e., BISDC Architecture for MECA with inputs of clk,

cur_pixel[7:0], ref_pixel[7:0], PE Output, RQCG Output,

TCG Output are given in Fig 9.

Fig.9: Output of the TOP Module

V. CONCLUSION

BISDC architecture for self-detection and self-correction

of errors of PEs in an ME is proposed in this work. Based

on the RQ code, a RQCG-based TCG design is developed

to generate the corresponding test codes to detect errors

and recover data. Performance evaluation reveals that the

proposed BISDC architecture effectively achieves self-

detection and self-correction capabilities with minimal

area (LUT). The Functional-simulation has been

successfully carried out with the results matching with

expected ones. The design functional verification and

Synthesis is done by using Xilinx-ISE 12.3 Version.
.

REFERENCES

[1] Advanced Video Coding for Generic Audiovisual Services,

ISO/IEC 14496-10:2005 (E), Mar. 2005, ITU-T Rec. H.264 (E).

[2] Information Technology-Coding of Audio-Visual Objects—Part 2:

Visual, ISO/IEC 14 496-2, 1999.

[3] Y. W. Huang, B. Y. Hsieh, S. Y. Chien, S. Y. Ma, and L. G. Chen,

―Analysis and complexity reduction of multiple reference frames

motion estimation in H.264/AVC,‖ IEEE Trans. Circuits Syst.

Video Technol., vol. 16, no. 4, pp. 507–522, Apr. 2006.

[4] C. Y. Chen, S. Y. Chien, Y. W. Huang, T. C. Chen, T. C. Wang,

and L. G. Chen, ―Analysis and architecture design of variable

block-size motion estimation for H.264/AVC,‖ IEEE Trans.

Circuits Syst. I, Reg. Papers, vol. 53, no. 3, pp. 578–593, Mar. 2006.

[5] T. H. Wu, Y. L. Tsai, and S. J. Chang, ―An efficient design-for-

testability scheme for motion estimation in H.264/AVC,‖ in Proc.

Int. Symp VLSI Design, Autom. Test, Apr. 2007, pp. 1–4.

[6] M. Y. Dong, S. H. Yang, and S. K. Lu, ―Design-for-testability

techniques for motion estimation computing arrays,‖ in Proc. Int.

Conf. Commun., Circuits Syst., May 2008, pp. 1188–1191.

[7] Y. S. Huang, C. J. Yang, and C. L. Hsu, ―C-testable motion

estimation design for video coding systems,‖ J. Electron. Sci.

Technol., vol. 7, no.4, pp. 370–374, Dec. 2009.

[8] D. Li, M. Hu, and O. A. Mohamed, ―Built-in self-test design of

motion estimation computing array,‖ in Proc. IEEE Northeast

Workshop Circuits Syst., Jun. 2004, pp. 349–352.

